Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Genet ; 14: 1067172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007952

RESUMO

Introduction: Prostate cancer (PCa) is the second most common malignancy in men. Despite multidisciplinary treatments, patients with PCa continue to experience poor prognoses and high rates of tumor recurrence. Recent studies have shown that tumor-infiltrating immune cells (TIICs) are associated with PCa tumorigenesis. Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to derive multi-omics data for prostate adenocarcinoma (PRAD) samples. The CIBERSORT algorithm was used to calculate the landscape of TIICs. Weighted gene co-expression network analysis (WGCNA) was performed to determine the candidate module most significantly associated with TIICs. LASSO Cox regression was applied to screen a minimal set of genes and construct a TIIC-related prognostic gene signature for PCa. Then, 78 PCa samples with CIBERSORT output p-values of less than 0.05 were selected for analysis. WGCNA identified 13 modules, and the MEblue module with the most significant enrichment result was selected. A total of 1143 candidate genes were cross-examined between the MEblue module and active dendritic cell-related genes. Results: According to LASSO Cox regression analysis, a risk model was constructed with six genes (STX4, UBE2S, EMC6, EMD, NUCB1 and GCAT), which exhibited strong correlations with clinicopathological variables, tumor microenvironment context, antitumor therapies, and tumor mutation burden (TMB) in TCGA-PRAD. Further validation showed that the UBE2S had the highest expression level among the six genes in five different PCa cell lines. Discussion: In conclusion, our risk-score model contributes to better predicting PCa patient prognosis and understanding the underlying mechanisms of immune responses and antitumor therapies in PCa.

2.
Front Genet ; 13: 804190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664305

RESUMO

Accurately predicting the survival prospects of patients suffering from pancreatic adenocarcinoma (PAAD) is challenging. In this study, we analyzed RNA matrices of 182 subjects with PAAD based on public datasets obtained from The Cancer Genome Atlas (TCGA) as training datasets and those of 63 subjects obtained from the Gene Expression Omnibus (GEO) database as the validation dataset. Genes regulating the metabolism of PAAD cells correlated with survival were identified. Furthermore, LASSO Cox regression analyses were conducted to identify six genes (XDH, MBOAT2, PTGES, AK4, PAICS, and CKB) to create a metabolic risk score. The proposed scoring framework attained the robust predictive performance, with 2-year survival areas under the curve (AUCs) of 0.61 in the training cohort and 0.66 in the validation cohort. Compared with the subjects in the low-risk cohort, subjects in the high-risk training cohort presented a worse survival outcome. The metabolic risk score increased the accuracy of survival prediction in patients suffering from PAAD.

3.
Mol Psychiatry ; 27(8): 3367-3373, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35546634

RESUMO

Childhood trauma is robustly linked to a broad range of adverse outcomes with consequences persisting far into adulthood. We conducted a prospective longitudinal study to predict psychiatric disorders and other adverse outcomes from trauma-related methylation changes 16.9 years after trauma exposure in childhood. Methylation was assayed using a sequencing-based approach that provides near-complete coverage of all 28 million sites in the blood methylome. Methylation data involved 673 assays from 489 participants aged 13.6 years (SD = 1.9) with outcomes measures collected at age 30.4 (SD = 2.26). For a subset of 303 participants we also generated methylation data in adulthood. Trauma-related methylation risk scores (MRSs) significantly predicted adult depression, externalizing problems, nicotine dependence, alcohol use disorder, serious medical problems, social problems and poverty. The predictive power of the MRSs was higher than that of reported trauma and could not be explained by the reported trauma, correlations with demographic variables, or a continuity of the predicted health problems from childhood to adulthood. Rather than measuring the occurrence of traumatic events, the MRSs seemed to capture the subject-specific impact of trauma. The majority of predictive sites did not remain associated with the outcomes suggesting the signatures of trauma do not become biologically embedded in the blood methylome. Instead, the long-term effects of trauma therefore seemed more consistent with a developmental mechanism where the initial subject-specific impacts of trauma are magnified over time. The MRSs have the potential to be a novel clinical biomarker for the assessment of trauma-related health risks.


Assuntos
Experiências Adversas da Infância , Transtornos Mentais , Adulto , Humanos , Criança , Adolescente , Adulto Jovem , Estudos Prospectivos , Estudos Longitudinais , Metilação de DNA/genética , Transtornos Mentais/epidemiologia
4.
Mol Psychiatry ; 25(6): 1334-1343, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31501512

RESUMO

Recurrent and chronic major depressive disorder (MDD) accounts for a substantial part of the disease burden because this course is most prevalent and typically requires long-term treatment. We associated blood DNA methylation profiles from 581 MDD patients at baseline with MDD status 6 years later. A resampling approach showed a highly significant association between methylation profiles in blood at baseline and future disease status (P = 2.0 × 10-16). Top MWAS results were enriched specific pathways, overlapped with genes found in GWAS of MDD disease status, autoimmune disease and inflammation, and co-localized with eQTLS and (genic enhancers of) of transcription sites in brain and blood. Many of these findings remained significant after correction for multiple testing. The major themes emerging were cellular responses to stress and signaling mechanisms linked to immune cell migration and inflammation. This suggests that an immune signature of treatment-resistant depression is already present at baseline. We also created a methylation risk score (MRS) to predict MDD status 6 years later. The AUC of our MRS was 0.724 and higher than risk scores created using a set of five putative MDD biomarkers, genome-wide SNP data, and 27 clinical, demographic and lifestyle variables. Although further studies are needed to examine the generalizability to different patient populations, these results suggest that methylation profiles in blood may present a promising avenue to support clinical decision making by providing empirical information about the likelihood MDD is chronic or will recur in the future.


Assuntos
Metilação de DNA , Depressão , Transtorno Depressivo Maior , Suscetibilidade a Doenças , Encéfalo/metabolismo , Doença Crônica , Ilhas de CpG/genética , Metilação de DNA/genética , Depressão/sangue , Depressão/genética , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos
5.
Am J Psychiatry ; 175(8): 774-782, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29656664

RESUMO

OBJECTIVE: Major depressive disorder is associated with an increased risk of mortality and aging-related diseases. The authors examined whether major depression is associated with higher epigenetic aging in blood as measured by DNA methylation (DNAm) patterns, whether clinical characteristics of major depression have a further impact on these patterns, and whether the findings replicate in brain tissue. METHOD: DNAm age was estimated using all methylation sites in blood of 811 depressed patients and 319 control subjects with no lifetime psychiatric disorders and low depressive symptoms from the Netherlands Study of Depression and Anxiety. The residuals of the DNAm age estimates regressed on chronological age were calculated to indicate epigenetic aging. Major depression diagnosis and clinical characteristics were assessed with questionnaires and psychiatric interviews. Analyses were adjusted for sociodemographic characteristics, lifestyle, and health status. Postmortem brain samples of 74 depressed patients and 64 control subjects were used for replication. Pathway enrichment analysis was conducted using ConsensusPathDB to gain insight into the biological processes underlying epigenetic aging in blood and brain. RESULTS: Significantly higher epigenetic aging was observed in patients with major depression compared with control subjects (Cohen's d=0.18), with a significant dose effect with increasing symptom severity in the overall sample. In the depression group, epigenetic aging was positively and significantly associated with childhood trauma score. The case-control difference was replicated in an independent data set of postmortem brain samples. The top significantly enriched Gene Ontology terms included neuronal processes. CONCLUSIONS: As compared with control subjects, patients with major depression exhibited higher epigenetic aging in blood and brain tissue, suggesting that they are biologically older than their corresponding chronological age. This effect was even more profound in the presence of childhood trauma.


Assuntos
Envelhecimento/genética , Metilação de DNA , Transtorno Depressivo Maior/genética , Adulto , Adultos Sobreviventes de Eventos Adversos na Infância/psicologia , Encéfalo/metabolismo , Estudos de Casos e Controles , Metilação de DNA/genética , Transtorno Depressivo Maior/complicações , Feminino , Nível de Saúde , Humanos , Estilo de Vida , Estudos Longitudinais , Masculino , Países Baixos
6.
Genome Biol ; 18(1): 24, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28137292

RESUMO

Based on an extensive simulation study, McGregor and colleagues recently recommended the use of surrogate variable analysis (SVA) to control for the confounding effects of cell-type heterogeneity in DNA methylation association studies in scenarios where no cell-type proportions are available. As their recommendation was mainly based on simulated data, we sought to replicate findings in two large-scale empirical studies. In our empirical data, SVA did not fully correct for cell-type effects, its performance was somewhat unstable, and it carried a risk of missing true signals caused by removing variation that might be linked to actual disease processes. By contrast, a reference-based correction method performed well and did not show these limitations. A disadvantage of this approach is that if reference methylomes are not (publicly) available, they will need to be generated once for a small set of samples. However, given the notable risk we observed for cell-type confounding, we argue that, to avoid introducing false-positive findings into the literature, it could be well worth making this investment.Please see related Correspondence article: https://genomebiology.biomedcentral.com/articles/10/1186/s13059-017-1149-7 and related Research article: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0935-y.


Assuntos
Metilação de DNA
7.
Biochim Biophys Acta ; 1862(6): 1172-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27039663

RESUMO

Our previous studies have shown that PRKA kinase anchor protein 9 (AKAP-9) is involved in colorectal cancer (CRC) cell proliferation and migration in vitro. However, whether or not AKAP-9 is important for CRC development or metastasis in vivo remains unknown. In the present study, we found that AKAP-9 expression was significantly higher in human colorectal cancer tissues than the paired normal tissues. In fact, AKAP-9 level correlated with the CRC infiltrating depth and metastasis. Moreover, the higher AKAP-9 expression was associated with the lower survival rate in patients. In cultured CRC cells, knockdown of AKAP-9 inhibited cell proliferation, invasion, and migration. AKAP-9 deficiency also attenuated CRC tumor growth and metastasis in vivo. Mechanistically, AKAP-9 interacted with cdc42 interacting protein 4 (CIP4) and regulated its expression. CIP4 levels were interrelated to the AKAP-9 level in CRC cells. Functionally, AKAP-9 was essential for TGF-ß1-induced epithelial-mesenchymal transition of CRC cells, and CIP4 played a critical role in mediating the function of AKAP-9. Importantly, CIP4 expression was significantly up-regulated in human CRC tissues. Taken together, our results demonstrated that AKAP-9 facilitates CRC development and metastasis via regulating CIP4-mediated epithelial-mesenchymal transition of CRC cells.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Invasividade Neoplásica/patologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Proteínas do Citoesqueleto/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Invasividade Neoplásica/genética , Mapas de Interação de Proteínas
8.
Oncotarget ; 7(10): 11733-43, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26887056

RESUMO

Our earlier findings indicate that the long non-coding RNA MALAT1 promotes colorectal cancer (CRC) cell proliferation, invasion and metastasis in vitro and in vivo by increasing expression of AKAP-9. In the present study, we investigated the molecular mechanism by which MALAT1 enhances AKAP9 expression in CRC SW480 cells. We found that MALAT1 interacts with both SRPK1 and SRSF1. MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation. Following MALAT1 knockdown, overexpression of SRPK1 was sufficient to restore SRSF1 phosphorylation and AKAP-9 expression to a level that promoted cell proliferation, invasion and migration in vitro. Conversely, SRPK1 knockdown after overexpression of MALAT1 in SW480 cells diminished SRSF1 phosphorylation and AKAP-9 expression and suppressed cell proliferation, invasion and migration in vitro. These findings suggest MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation in CRC cells. These results reveal a novel molecular mechanism by which MALAT1 regulates AKAP-9 expression in CRC cells.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Fosforilação , RNA Longo não Codificante/genética , Fatores de Processamento de Serina-Arginina/genética , Transfecção
9.
Schizophr Bull ; 42(4): 1018-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26656881

RESUMO

Mutated CpG sites (CpG-SNPs) are potential hotspots for human diseases because in addition to the sequence variation they may show individual differences in DNA methylation. We performed methylome-wide association studies (MWAS) to test whether methylation differences at those sites were associated with schizophrenia. We assayed all common CpG-SNPs with methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) using DNA extracted from 1408 blood samples and 66 postmortem brain samples (BA10) of schizophrenia cases and controls. Seven CpG-SNPs passed our FDR threshold of 0.1 in the blood MWAS. Of the CpG-SNPs methylated in brain, 94% were also methylated in blood. This significantly exceeded the 46.2% overlap expected by chance (P-value < 1.0×10(-8)) and justified replicating findings from blood in brain tissue. CpG-SNP rs3796293 in IL1RAP replicated (P-value = .003) with the same direction of effects. This site was further validated through targeted bisulfite pyrosequencing in 736 independent case-control blood samples (P-value < 9.5×10(-4)). Our top result in the brain MWAS (P-value = 8.8×10(-7)) was CpG-SNP rs16872141 located in the potential promoter of ENC1. Overall, our results suggested that CpG-SNP methylation may reflect effects of environmental insults and can provide biomarkers in blood that could potentially improve disease management.


Assuntos
Encéfalo/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Estudo de Associação Genômica Ampla , Transtornos Psicóticos/metabolismo , Esquizofrenia/metabolismo , Adulto , Idoso , Autopsia , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Neuropeptídeos/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/sangue , Transtornos Psicóticos/genética , Esquizofrenia/sangue , Esquizofrenia/genética
10.
Biochim Biophys Acta ; 1852(1): 166-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446987

RESUMO

Our previous studies have shown that the 3' end of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is involved in colorectal cancer (CRC) cell proliferation and migration/invasion in vitro. The role and mechanism of MALAT1 in CRC metastasis in vivo, however, remain largely unknown. In the present study, we found that MALAT1 was up-regulated in human primary CRC tissues with lymph node metastasis. Overexpression of MALAT1 via RNA activation promoted CRC cell proliferation, invasion and migration in vitro, and stimulated tumor growth and metastasis in mice in vivo. Conversely, knockdown of MALAT1 inhibited CRC tumor growth and metastasis. MALAT1 regulated at least 243 genes in CRC cells in a genome-wide expression profiling. Among these genes, PRKA kinase anchor protein 9 (AKAP-9) was significantly up-regulated at both mRNA and protein levels. AKAP-9 was highly expressed in CRC cells with metastatic potential and human primary CRC tissues with lymph node metastasis, but not in normal cells or tissues. Importantly, knockdown of AKAP-9 blocked MALAT1-mediated CRC cell proliferation, migration and invasion. These data indicate that MALAT1 may promote CRC tumor development via its target protein AKAP-9.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/metabolismo , Metástase Linfática , Invasividade Neoplásica , RNA Longo não Codificante/fisiologia , Western Blotting , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
FASEB J ; 28(5): 1998-2008, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24532667

RESUMO

The mouse is extensively used to model human folate metabolism and therapeutic outcomes with antifolates. However, the folylpoly-γ-glutamate synthetase (fpgs) gene, whose product determines folate/antifolate intracellular retention and antifolate antitumor activity, displays a pronounced species difference. The human gene uses only a single promoter, whereas the mouse uses two: P2, akin to the human promoter, at low levels in most tissues; and P1, an upstream promoter used extensively in liver and kidney. We deleted the mouse P1 promoter through homologous recombination to study the dual-promoter mouse system and to create a mouse with a humanized fpgs gene structure. Despite the loss of the predominant fpgs mRNA species in liver and kidney (representing 95 and 75% of fpgs transcripts in these tissues, respectively), P1-knockout mice developed and reproduced normally. The survival of these mice was explained by increased P2 transcription due to relief of transcriptional interference, by a 3-fold more efficient translation of P2-derived than P1-derived transcripts, and by 2-fold higher stability of P2-derived FPGS. In combination, all 3 effects reinstated FPGS function, even in liver. By eliminating mouse P1, we created a mouse model that mimicked the human housekeeping pattern of fpgs gene expression.


Assuntos
Ácido Fólico/metabolismo , Peptídeo Sintases/genética , Regiões Promotoras Genéticas , Alelos , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Sequência de Bases , Células-Tronco Embrionárias/citologia , Éxons , Antagonistas do Ácido Fólico/farmacologia , Deleção de Genes , Perfilação da Expressão Gênica , Vetores Genéticos , Homozigoto , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Biossíntese de Proteínas , Transporte Proteico , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
12.
Mol Cell Biol ; 28(2): 836-48, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17998333

RESUMO

The mouse fpgs gene uses two distantly placed promoters to produce functionally distinct isozymes in a tissue-specific pattern. We queried how the P1 and P2 promoters were differentially controlled. DNA methylation of the CpG-sparse P1 promoter occurred only in tissues not initiating transcription at this site. The P2 promoter, which was embedded in a CpG island, appeared open to transcription in all tissues by several criteria, including lack of DNA methylation, yet was used only in dividing tissues. The patterns of histone modifications over the two promoters were very different: over P1, histone activation marks (acetylated histones H3 and H4 and H3 trimethylated at K4) reflected transcriptional activity and apparently reinforced the effects of hypomethylated CpGs; over P2, these marks were present in tissues whether P2 was active, inactive, or engaged in assembly of futile initiation complexes. Since P1 transcriptional activity coexisted with silencing of P2, we sought the mechanism of this transcriptional interference. We found RNA polymerase II, phosphorylated in a pattern consistent with transcriptional elongation, and only minimal levels of initiation factors over P2 in liver. We concluded that mouse fpgs uses DNA methylation to control tissue-specific expression from a CpG-sparse promoter, which is dominant over a downstream promoter masked by promoter occlusion.


Assuntos
Epigênese Genética/genética , Transcrição Gênica/genética , Acetilação , Animais , Cromatina/genética , Citosina/metabolismo , Metilação de DNA , Histonas/metabolismo , Fígado/enzimologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Fosforilação , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Serina/genética , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...